
Simulate, Stimulate, Test…

How to Properly Manage Tabor’s AWG Arbitrary Memory - FAQ No. 08011750 1

How to Properly Manage Tabor’s AWG Arbitrary Memory

In this tutorial, we will give a quick start guide on how you can manage the Tabor AWG’s arbitrary

memory using a specific set of Standard Commands for Programmable Instruments (SCPI). These are an

ASCII-based set of commands for reading and writing instrument settings.

This tutorial will provide a quick introduction to the Tabor WXxx84C Arbitrary memory set of commands

and will demonstrate how programmers could maximize their memory management abilities in a quick

& efficient manner. Efficient use of the following commands can save precious time when trying to send

large quantities of data to your AWG, whether you need to download a large waveform or a large

number of smaller waveforms.

All Tabor AWGs have a similar set of basic commands to use. Although The WX2184C has some features

which are unique, It is a good example for learning how to program the basics, as it covers most of the

features which also appear in all other Tabor Models.

All the arbitrary waveform commands are listed in the Table below. Factory default values after *RST

(instrument reset) are shown in the Default column. Parameter range, low & high limits are listed,

where applicable. Information regarding each command can also be found in the Tabor user manual,

which can be downloaded from Tabor’s website.

Keyword Parameter Form Default Notes

:TRACe

 :MODE SINGle|DUPLicate|ZERoed|COMBined DUPLicate Select waveform download
mode

 [:DATA] #<header><binary_block> Waveform data array

 :DEFine <1 to 32,000>,<192 to 16(32)e6> Segment number &
segment length

 :DEFine<n>? <n = 1 to 32,000> Query length of seg <n>

 :DELete

 [:NAME] 1 to 32,000 Delete one segment

 :ALL Delete all segments

 :POINts? Queries waveform length

 :SELect 1 to 32,000 1

 :COUPle <1 to 32,000>,<1 to 32,000>

 :SOURce BUS | EXTernal BUS Toggle control source

 :TIMing COHerent | IMMediate COH Select timing

:SEGment

 [:DATA] #<header><binary_block> Segment data array

Table 1: Arbitrary waveforms commands set.

http://www.taborelec.com/downloads

Simulate, Stimulate, Test…

How to Properly Manage Tabor’s AWG Arbitrary Memory - FAQ No. 08011750 2

 Arbitrary Memory Commands - Quick Introduction

Arbitrary waveforms are generated from digital data points, which are read from a dedicated waveform
memory and are then converted to analog values using the Digital to Analog Converter (DAC). The
values the data points can take depends on the number of bits of the DAC or the “vertical resolution”. In
the WX2184C, the vertical resolution is of 14 bits (16,384 points).Hence, each sample is placed on the
vertical axis with a resolution of 1/16,384 from 0 to 16383.

When the instrument is programmed to output arbitrary waveforms, each time the sample clock rising
edge occurs, the AWG samples a data point, starting from address 0 to the last address of the segment.
The rate at which each point is sampled is defined by the sample clock value.
Unlike the built-in standard waveforms, arbitrary waveforms must first be loaded into the instrument's
memory by the user. Correct memory management is required for best utilization of the arbitrary
memory.

The memory of the Tabor arbitrary waveform generators is comprised of a finite number of points. The
maximum memory size depends on the instrument’s model & option. For example, the WX2184C model
has 16M/32M memory points for each channel.

Information on how to partition the memory, define segment length and download waveform data to

the Tabor generator using the arbitrary memory commands set is given below. We will go over the

technical details of each command one by one, followed by an example of how to properly use this set

of commands. It is highly recommended to read the user manual of each specific Tabor AWG model’s

you are currently working with.

1. :TRACe:DEFine<segment_#>,<length>

Input Range Type Default Description

<segment_#> Depends on the
instrument model

Numeric (integer
only)

1 Selects the segment number of which will be
programmed using this command.

<length> Depends on the
instrument model

Numeric (integer
only)

<length> Programs the size of the selected segment.
Minimum segment length depends on the
instrument model. The maximum (n) is limited by
the size of the installed memory.

Use this command to define the size of a specific memory segment. In the WX2184C, the final
size of the arbitrary memory is 16,000,000 points (32,000,000 points optional). The memory
can be partitioned to smaller segments, up to 32Ksegments. The total length of memory
segments cannot exceed the size of the waveform memory. Minimum segment size &
minimum increment depends on the Tabor model, these restrictions can be found in each of
Tabor model’s user manual. For example, for the WX2184C the minimum segment size is 192
with increments of 16 points.

Simulate, Stimulate, Test…

How to Properly Manage Tabor’s AWG Arbitrary Memory - FAQ No. 08011750 3

2. :TRACe:DELete<segment_#>

Input Range Type Default Description

<segment_#> Depends on the
instrument
model

Numeric (integer
only)

1 Selects the segment number of which will be deleted

This command will delete a predefined segment from the working memory. The memory space
that has been released will be available for new waveforms, as long as the new waveform will be
equal or smaller in size to the deleted segment. If the deleted segment is the last segment, then
the size of another waveform written to the same segment is not limited.

 FOR EXAMPLE

Let’s consider two segments, the first being a 1024-point waveform and the second with 320 points. If you delete segment 1,

you can reprogram another waveform to segment 1 with size to 1024 points. If you reprogram segment 1 with more than

1024 points, the instrument will generate an error and will not accept this waveform. On the other hand, if you delete

segment 2, which was the last segment you programmed, you can reprogram this segment with waveforms having length

limited only by the size of the remaining memory space.

3. :TRACe:SELect<segment_#> (?)

Name Range Type Default Description

<segment_#> 1 to 32k Numeric
(Integer only)

1 Selects the active segment number.

Use this command to set or query the active waveform segment at the output connector.
By selecting the active segment, you are performing two functions:

 Successive TRACE commands will affect the selected segment.

 The SYNC output will be assigned to the selected segment. This behavior is especially
important for sequence operation, where multiple segments form a large sequence.
In this case, you can synchronize external devices exactly to the segment of interest.

Simulate, Stimulate, Test…

How to Properly Manage Tabor’s AWG Arbitrary Memory - FAQ No. 08011750 4

4. :TRACe:MODE SINGle / DUPLicate / ZERoed / COMBined

Input Type Default Description

SINGle Discrete Waveform data is downloaded to the flash drive and then written to the selected
channel memory.

DUPLicate Discrete DUPL The same waveform data is downloaded to both channels of a channel pair.

ZERoed Discrete The waveform data is downloaded to the selected channel. A DC waveform (zeroes) is
downloaded to the selected channel pair.

COMBined Discrete Waveform is downloaded to the selected channel pair. Waveform data must be
arranged in accordance to memory limitations.

This command will define how the arbitrary waveform is downloaded to the unit’s memory. The
output channels of the unit are arranged in pairs, meaning that each two channels share a single
memory block of 32Mpoints (64Mpoints optional). The channel pair memory block is divided in
such a way that the individual channel’s memory blocks (16Mpoints per channel in standard
configuration) are interleaved in blocks of 16 points as depicted in figure 1 below:

Figure 1: Channel pair memory block.

NOTE

CH pair 1&2: The first 16 point data block is of Channel 2. CH pair 3&4 the first 16 point data block is of Channel 3.

As a result of the shared memory block, the segment size of each channel in a channel pair must
be identical. In addition, when downloading data, it is ALWAYS written to the shared memory
block and therefore to both channels. The user has two ways of downloading the waveform
data:

 COMBINED – The Tabor AWG assumes the user is downloading to both channels and

has pre-arranged the data in the required 16point interleaved manner. This is the

COMBINED download mode and it is the fastest way to download data to the unit. Note

that in this mode the user has full control so waveform data must be arranged correctly.

 SINGLE, DUPLICATE, ZEROED - This second option allows the user to prepare the

waveform as if each channel memory is independent and once the data is transferred,

Simulate, Stimulate, Test…

How to Properly Manage Tabor’s AWG Arbitrary Memory - FAQ No. 08011750 5

the unit itself will arrange the data in the memory. There are 3 modes where the unit

handles how the data is written:

I. DUPLICATE - When downloading to one of the channel pair, the data is

duplicated to the other channel. For example, when downloading a 1024

points Sine waveform to CH1, a 1024 points Sine is also downloaded to CH2.

II. ZEROED - When downloading to one of the channel pair, the other

channel‘s memory is filled with zeroes (DC waveform). For example, when

downloading a 1024 points Sine waveform to CH1, a 1024 points DC

waveform is downloaded to CH2.

III. SINGLE - When the data is downloaded to the unit, it is saved to the flash

drive and then written to the channel pair memory. This enables the user to

download a waveform only to the selected channel without changing data

in the selected channel pair.

5. :TRACe:DATA#<header><binary_block>

Input Type Description

<header> Discrete Information on the size of the binary block that contains waveform data points.

<binary_block> Binary Block of binary data that contains waveform data points.

This command will download data to the Tabor’s arbitrary waveform memory. Waveform data is
loaded to the WX2184C using high-speed binary transfer, A special command that was defined
by IEEE-STD-488.2 for this purpose. This high-speed binary transfer allows any 8-bit bytes
(including extended ASCII code) to be transmitted in a message. This command is particularly
useful for sending large quantities of data.

The generator accepts waveform samples as 16-bit integers, which are sent in two-byte words,
one after the other. Therefore, the total number of bytes is always twice the number of data
points in the waveform. For example, 20,000 bytes are required to download a waveform with
10,000 points.

Simulate, Stimulate, Test…

How to Properly Manage Tabor’s AWG Arbitrary Memory - FAQ No. 08011750 6

Figure 2: How Tabor’s AWG interprets a TRACE:DATA command.

Let’s start with a simple example:

fprintf(DeviceObject, ‘*OPC?;:TRAC:DATA#42048’);
fwrite(DeviceObject, ‘<binary_block>’);
fscanf(DeviceObject,’%d’);

The previous set of commands causes the transfer of 2,048 bytes of data (1,024 waveform
points) into the active memory segment. The above command lines are interpreted this way:

 The ASCII "#" ($23) designates the start of the binary data block.

 "4" designates the number of digits that follow.

 "2048" is the even number of bytes to follow.

 “<binary_block>” represents the waveform data.

 Proper download of data to the instrument should always start with a ‘*OPC?’ query

(operation complete) before the header is sent. The read operation is for the

response of the unit once it finishes the download of the binary block.

There are a number of points you should be aware of before you start using the TRAC:DATA
command:

I. Each channel has its own waveform memory. Therefore, make sure you select the correct
active channel (with the INST:SEL command) before you download data to the generator.

II. Before sending a TRAC:DATA command, you should prepare the Tabor AWG for download by
sending these two commands in the following order:

a) TRAC:DEF command to define a number & length to the segment you are creating (This
length should be the same as the number of points you are about to download).

Simulate, Stimulate, Test…

How to Properly Manage Tabor’s AWG Arbitrary Memory - FAQ No. 08011750 7

b) TRAC:SEL command to select the segment number you just created as the active
segment. This is done to make sure you are downloading data to the correct segment.

III. When sending the TRAC:DATA command, it is recommended to start the command with a
‘*OPC?’ query before the header and only then to send the binary data block. In addition, do
not use a termination character at the end of the binary block. End the procedure with a
read operation for the *OPC? Query.
For example:

For downloading waveform of 1024 points, prepare a 1024 points buffer as follows:

fprintf(DeviceObj, ‘:FUNC:MODE USER;:TRAC:MODE DUPL\n’);
Uint16 data[1024];
for (i=0;i<1024;i++){

 data(i) = 16383*(0.5+0.5*sin(2*pi*i/1024)); // waveform data
}
fprintf(DeviceObj, ‘:TRAC:DEF 1, 1024\n’);
fprintf(DeviceObj, ‘:TRAC:SEL 1\n’);
fprintf(DeviceObj, ‘*OPC?;:TRAC:DATA#42048’); // no termination character
fwrite(DeviceObj, data);
fscanf(DeviceObj, ‘%d’);

IV. Each Tabor model has its limitations regarding minimum segment length & minimum
increment. For example, using the WX2184C, Waveform length must be a minimum of 192
points with increments of 16 points. Data you will download should comply with these
restrictions.

V. It is recommended to first create your waveform data and normalize the values to be in the
range of [0, 1]. After you will finish the preparation of your waveform data (creation, adding
dummy points), you can maximize the vertical resolution of your waveform according to the
Tabor model specifications. For example in the WX2184C, waveform data points contain 14-
bit values (214 = 16,384). The range is from 0 to 16383, which corresponds to full-scale
amplitude setting. Set the data you wish to download according to the desired resolution.

VI. If you are about to download a large number of waveforms to the Tabor generator, you
could save download time by combining all of your waveforms into one data array, download
the data using the TRACE:DATA command and then slice it into the proper segments using
the SEGM:DATA command. A detailed explanation on how to use the SEGM:DATA command
is given in step number 6.

VII. Each data point is a 2 byte word comprised of a low byte and a high byte. The waveform data
should be prepared in an array so that for each data point, the generator will accept the low
byte of each data point first.

Simulate, Stimulate, Test…

How to Properly Manage Tabor’s AWG Arbitrary Memory - FAQ No. 08011750 8

VIII. If COMBINED mode is chosen, the data is written to both channels in each channel pair. It is
written in blocks of 16 points alternating between the two channels. Notice that the data
must be prepared in the appropriate interleaved manner, 16 points for each channel
beginning with CH2.
For example:

For downloading two different waveforms each of 1024 points to a channel pair, prepare a
2048 points buffer as follows:

fprintf(DeviceObj, ‘:FUNC:MODE USER;:TRAC:MODE COMB\n’);
Uint16 data[2048];
for (i=0;i<2048;i++){

 if(mod(i,32) <= 15)
 data(i) = 16383; //data for CH2 or CH4

 else
 data(i) = 0; //data for CH1 or CH3

}
//for Combined mode, segment definition is required only once for both channels
fprintf(DeviceObj, ‘:TRAC:DEF 1, 1024\n’);
fprintf(DeviceObj, ‘:TRAC:SEL 1\n’);
fprintf(DeviceObj, ‘*OPC?;:TRAC:DATA#44096’); // no termination character
fwrite(DeviceObj, data);
fscanf(DeviceObj, ‘%d’);

IX. Each data point consists of two bytes, which are 16 bit, but has only a 14 bit value. Markers
data is saved in the unused D14 & D15 bits as can be seen in figure 3 below. Marker data is
written only to CH2 and CH4. In CH1 and CH3, D14 and D15 are “don’t care”. More
information in this manner can be found in the specific Tabor model’s user manual.

Figure 3: Waveform Data Word Representation.

Simulate, Stimulate, Test…

How to Properly Manage Tabor’s AWG Arbitrary Memory - FAQ No. 08011750 9

6. :SEGMent:DATA#<header><data array>

Input Type Description

<header> Discrete Contains information on the size of the binary block that contains the segments length.

<data_array> Binary Block of binary data that contains information on the segment table. All the segment’s length
as a string one after the other.

The SEGM:DATA command is a very useful SCPI command you would be glad to use in cases you
need to partition the waveform memory to a large number of segments. Using SEGM:DATA, one
could define an entire segment table in one command, which makes this process extremely fast
& efficient. The SEGM:DATA command will partition the waveform memory to smaller segments,
hence speeding up the memory segmentation process. The idea is that first, all of your
waveform data can be built & downloaded as one long waveform using the TRAC:DATA
command and then just use SEGM:DATA to split the memory to the appropriate memory
segments. This way, there is no need for definition of waveforms, one by one, to individual
segments as with the TRAC:DEF command.

Figure 4: How Tabor’s AWG interpret the SEGM:DATA command.

As a simple example, the next commands will download to the generator a segment table of 4
segments:

fprintf(DeviceObject, ‘*OPC?;:SEGM:DATA#216’);
fwrite(DeviceObject, ‘<data array>’);
fscanf(DeviceObject, ‘%d’);

Simulate, Stimulate, Test…

How to Properly Manage Tabor’s AWG Arbitrary Memory - FAQ No. 08011750 10

The commands above cause the transfer of 16 bytes of data (4 segments) into the segment table
buffer. The command lines are interpreted this way:

 The ASCII "#" ($23) designates the start of the binary data block.

 "2" designates the number of digits that follow.

 "16" is the number of bytes to follow. Segment table data has 32-bit values of which are

used for segment size. Therefore, Data for each segment must have 4 bytes.

 “<binary block>” contains each and every one of the segment size values in a row. All

must be in a 32bit unsigned integer format.

 Proper download of data to the instrument should always start with an ‘*OPC?’ query

(operation complete?) before the header is sent. The read operation is for the response

of the unit once it finishes the download of the binary block.

The binary block contains a list of the segments lengths where each segment length is
represented using 4 bytes, therefore, the total number of bytes is always 4 times the number of
segments. For example, 36 bytes are required to download 9 segments to the segment table.

Figure 5: Segment Size Array Example

There are a number of points you should be aware of before you start preparing the data:

I. Only size is required as input, because segments are automatically numbered. Regardless if
you previously had any segments defined, the segment index will start from 1 to n.

II. Each channel pair has its own segment table buffer. Therefore, make sure you selected the
correct active channel (with the INST:SEL command) before you download segment table
data to the generator.

III. SEGM:DATA command overrides prior segment definitions, similar to the TRAC:DEL:ALL
command. Sending TRAC:DEL commands doesn’t really erase the data from the arbitrary
memory, it only erases the segment’s definitions (number & length).

IV. Max number of segments depends on your instrument’s model. With the WX2184C, the
maximum number of segments is 32,000.

Simulate, Stimulate, Test…

How to Properly Manage Tabor’s AWG Arbitrary Memory - FAQ No. 08011750 11

V. When sending this command, it is recommended to start the command with a ‘*OPC?’
query before the header and only then to send the binary data block. In addition, do not use
a termination character with this command.

VI. Maximum segment size depends on your installed option. With the basic WX2184C you can
program maximum 16M in one segment.

VII. The number of bytes in a complete segment table must divide by 4. The generator has no
control over data sent to its segment table during this unique data transfer. Therefore,
wrong data and/or incorrect number of bytes will cause erroneous memory partition. In
those situations you will be require to reboot.

VIII. Due to hardware considerations, when using the :TRACE:DATA command to download
several short waveforms as one long waveform, you will need to add 16 dummy points (if
minimal segment size is 384, then you will need to add 32 dummy points) at the start of
each waveform (except the first) as shown in figure 4 below. Dummy points are points with
the same value as the first point of the related segment. This addition must not be added to
the total length of the segments. Therefore, this should not be taken into consideration
while sending the segments length using the SEGM:DATA.

For example:
Each of the three waveforms shown in figure 6 (besides the first) is artificially expanded by
16 dummy-points right at the beginning of the segment. The value of these points should be
the same as the value of the first point of the waveform. So now, the total length of the
three waveform segments is 4,096 + 16 + 3,072 + 16 + 5,120 = 12,320 points. To download
the data correctly, the download mode should be COMBined.

Figure 6: Single segment download Array example

Simulate, Stimulate, Test…

How to Properly Manage Tabor’s AWG Arbitrary Memory - FAQ No. 08011750 12

7. :SEQuence:DATA#<header><data array>

Input Type Description

<header> Discrete Contains information on the size of the binary block that contains the sequence table data.

<data array> Binary Block of binary data that contains information on the sequence table.

While this command does not belong to this group of commands, it is quite similar to the
TRACE:DATA and SEGM:DATA commands. Using the SEQ:DATA one could build a complete
sequence table in one binary download. In this way, there is no need to define and download
individual sequencer steps using the SEQ:DEF command. Using this command, a sequence table
data is loaded to the AWG using high-speed binary transfer in a similar way as when waveform
data is loaded with the TRACE:DATA & SEGM:DATA commands. This command is particularly
useful for long sequences that use a large number of segments and sequence steps. The number
of bytes to be downloaded will be eight times the number of sequence steps:

Figure 7: How Tabor’s AWG interpret the SEQ:DATA command.

As an example, the next command will generate a three-step sequence with 24 bytes of data
that contain segment number, loops and jump flag option.

fprintf(DeviceObject, ‘*OPC?;:SEQ:DATA#224’);
fwrite(DeviceObject, ‘<binary block>’);
fscanf(DeviceObject, ‘%d’);

This command causes the transfer of 24 bytes of data (3-step sequence) to the sequence table

buffer. The binary block contains a list of sequence table entries where each entry is represented

Simulate, Stimulate, Test…

How to Properly Manage Tabor’s AWG Arbitrary Memory - FAQ No. 08011750 13

by 8 bytes. Therefore, the total number of bytes is always eight times the number of sequence
steps. The command line is interpreted this way:

 The ASCII "#" ($23) designates the start of the binary data block.

 "2" designates the number of digits that follow.

 "24" is the number of bytes to follow. This number must divide by 8.

 “<binary block>” contains the data of each and every one of the sequence steps in a

row:

I. Loops as a 32bit unsigned integer.

II. Segment number as a 16bit unsigned integer.

III. Jump flag as an 8bit unsigned integer.

IV. Adding another unused 8bit unsigned integer.

 Proper download of data to the instrument should always start with an ‘*OPC?’ query

(operation complete?) before the header is sent. The read operation is for the response

of the unit once it finishes the download of the binary block.

8. Coding examples

Following this tutorial (on Tabor website ->> remote control tutorials) you will find examples
attached. The examples are written in MATLAB, Python & LabVIEW and will provide a good
introduction to the functionality of Tabor units. Moreover, you will find Python, MATLAB &
LabVIEW shared utilities files + interactive examples of how you will be able to use such
functions in your own code. Thus, saving you the time it will take to implement them yourself.

In the following example, we created one cycle of sine waveform & divided it into several parts.
We then created a sequence, with each of the sine wave parts as a step in the sequence. Each
step in the sequence will be generated once to re-create the original sine wave. The example
demonstrate how to use faster downloading methods for large number of waveforms &
sequences
This example can be found in:

1. MATLAB – “wx2184_Tabor_Example_1.m”
2. LabVIEW – “Using_TRAC_SEGM_SEQ_DATA_SCPI.vi”
3. Python – “wx2184_Tabor_example_1.py”

The example performs the following steps:

I. Creates an arbitrary waveform (1 cycle of a sine wave) with user defined number of

points.

II. User will select the wanted segment size and the program will Re-arrange the

waveform data by:

http://www.taborelec.com/Tabor/Templates/showpage.asp?DBID=1&LNGID=1&TMID=842&FID=1623

Simulate, Stimulate, Test…

How to Properly Manage Tabor’s AWG Arbitrary Memory - FAQ No. 08011750 14

 Adding dummy points at the start of each future segment (except the first).

 Sorting the data string as was mentioned in the TRACE:DATA section of this

tutorial ([low byte 0, high byte 0, low byte 1, high byte 1,….]).

III. Partition the waveform memory into the users defined number of segments.

IV. Create a sequence table with each of the segments as a step. Each step will be looped

once & the whole sequence will run continuously.

As can be seen on a scope, an example of 4096 sine wave, with additional 16 dummy points was
downloaded, the wave was then divided into 16 segments. A sequence table was then created
to transmit the segments one after the other each time a valid trigger was applied (we used
triggered mode to add a small delay before each step to make the segmentation a bit more
visible):

 Yellow - the output sequence.

 Green - the trigger signal.

 Blue – the sync signal

Figure 8: Construct the original sine wave using 16 segments each of 256 points.

Simulate, Stimulate, Test…

How to Properly Manage Tabor’s AWG Arbitrary Memory - FAQ No. 08011750 15

Figure 9: Adding delay at the start of each one of the 16 steps.

The second time we ran this example we used a 2,048,000 points waveform and divided it into

1000 segments. Here is how it looks on scope:

Figure 10: Sine waveform re-constructed out of 1000 steps each of 2048 points.

Simulate, Stimulate, Test…

How to Properly Manage Tabor’s AWG Arbitrary Memory - FAQ No. 08011750 16

Here is a how much time you could save by using the SEGM:DATA command for managing the

Tabor AWG’s memory:

 Description: Without SEGM:DATA
1. Load each segment individually.
2. Create a sequence table using one

command line for each step of the
sequence.

With SEGM:DATA
1. Load all segments at once.
2. Partition the waveform memory.
3. Create a sequence table using one

command line.

Adding dummy points: - 16sec

Download time(2M): ~292sec 4sec

Memory partition using SEGM
(to 1,000 segments):

- ~0

Download sequence table (
1,000 steps):

~90sec ~2sec

 Total: ~382sec ~22sec

Table 2: Download time summary.

For More Information
To learn more about how to remote control Tabor instruments using Python, MATLAB & LabVIEW, visit

our website Support & Tutorials zone. If you encounter difficulties with connecting to Tabor units,

please contact us at support@taborelec.com and our support team will gladly help. For more of Tabor’s

solutions or to schedule a demo, please contact your local Tabor representative or email your request to

info@tabor.co.il. More information can be found at our website at www.taborelec.com

© Proprietary of Tabor Electronics Ltd.

file://///STORAGE/Shared_Zone/Elad/labview%20tutorials/support@taborelec.com%20
mailto:info@tabor.co.il
http://www.taborelec.com/

